Low Power Clock Network Design
نویسندگان
چکیده
Power is a primary concern in modern circuits. Clock distribution networks, in particular, are an essential element of a synchronous digital circuit and a significant power consumer. Clock distribution networks are subject to clock skew due to process, voltage, and temperature (PVT) variations and load imbalances. A target skew between sequentially-adjacent registers can be obtained in a balanced low power clock tree using techniques such as buffer and wire sizing. Existing skew mitigation techniques in tree-based clock distribution networks, however, are not efficient in coping with post design variations; whereas the latest non-tree mesh-based solutions reliably handle skew variations, albeit with a significant increase in dissipated power. Alternatively, crosslink-based methods provide low power and variation-efficient skew solutions. Existing crosslink-based methods, however, only address skew at the network topology level and do not target low power consumption. Different methods to manage skew and skew variations within tree and non-tree clock distribution networks are reviewed and compared in this paper. Guidelines for inserting crosslinks within a buffered low power clock tree are provided. Metrics to determine the most power efficient technique for a given circuit are discussed and verified with simulation.
منابع مشابه
High-performance and Low-power Clock Branch Sharing Pseudo-NMOS Level Converting Flip-flop
Multi-Supply voltage design using Cluster Voltage Scaling (CVS) is an effective way to reduce power consumption without performance degradation. One of the major issues in this method is performance and power overheads due to insertion of Level Converting Flip-Flops (LCFF) at the interface from low-supply to high-supply clusters to simultaneously perform latching and level conversion. In this p...
متن کاملA new low power high reliability flip-flop robust against process variations
Low scaling technology makes a significant reduction in dimension and supply voltage, and lead to new challenges about power consumption such as increasing nodes sensitivity over radiation-induced soft errors in VLSI circuits. In this area, different design methods have been proposed to low power flip-flops and various research studies have been done to reach a suitable hardened flip-flops. In ...
متن کاملAn Enhanced Design Methodology for Resonant Clock Trees
Clock distribution networks consume a considerable portion of the power dissipated by synchronous circuits. In conventional clock distribution networks, clock buffers are inserted to retain signal integrity along the long interconnects, which, in turn, significantly increase the power consumed by the clock distribution network. Resonant clock distribution networks are considered as efficient lo...
متن کاملDesign of Resonant Clock Distribution Networks for 3-D Integrated Circuits
Designing a low power clock network in synchronous circuits is an important task. This requirement is stricter for 3-D circuits due to the increased power densities. Resonant clock networks are considered efficient low-power alternatives to conventional clock distribution schemes. These networks utilize additional inductive circuits to reduce the power consumption while delivering a full swing ...
متن کاملDesign and Analysis of Power Efficient Clocked Pair Shared Flip Flop
In this paper, we examine the problems in the CDN of the flip flop & design an improved CDN oriented Flip-flop which is Clocked Pair Shared Flip Flop (CPSFF). Clock Division Network (CDN)’S plays an important role in the flip flop design and it’s the major element in the flip –flop for producing the logical outputs it’s much important to design the CDN with low power and area. Power consumption...
متن کامل